Improving the Energy Sensitivity of
Massive Calorimeters to Search for Light
Mass Dark Matter

Matt Pyle

University of California Berkeley

LBL: Dark Matter Workshop
15/06/08



Light Mass DM Limits: Why So Bad?
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The low-mass WIMP Direct Detection Challenge

WIMP Scattering Rate for 0=10"*1cm?
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Detector Requirement: Amazing Energy Sensitivity
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Collect and Concentrate
Phonon Energy into W TES

(Transition Edge Sensor)




Phonon Signal Bandwidth

Phohon enlergy s'ignal bandwi-dth
~ limited by athermal phonon

~ collection




Transition Edge Sensor: Dynamics
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Transition Edge Sensor: Noise

C 0 Theoretical Power Noise for TES (NEP)
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Bandwidth Optimization Rule

Vsensor < Vsignal

Power Noise for various G
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Estimated Power Noise [W/rtHz]

New: Noise of G23R Test Device
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[» T.=52-53 mK —
|* iZIP-IV TES Geometry

| Sp =1.5x10-17 W/rthz:

« Ge: oy ~S0eVt

« Sii Oy~ 25eVt

* (15% phonon

| collection efficiency)
« Some things not yet
| I S O 0 I 1 O S 1 understood G is x4
10771 bigger than expected

| Estimated Noise:
| TFN + Johnson
| Noise
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New: G23R
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Sensor Bandwidth
measured via voltage bias
jitter

Experts (No Phase
Separation)

Lsensor = 35 KS
\Y; =4.5 kHz

sensor

52 mK W TES is still too

fast! We need to continue
lowering T,
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Phonon Sensitivity with T
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| Why are we above the scaling
law curve?

| G: x4 larger than expected

« W TES films too thick?

* 2, varying with T ?
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Why is it taking so long?

What are the fundamental
limits in phonon resolution?



Problem #1: Parasitic Power

Cryocooler Vibrations @ Soudan

As we lower T, we become more .
sensitive to nuclear recoils, but we =
also become more sensitive to 5
environmental noise 52
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Resolution Limits: Parasitic Power

SAFARI has created P Sy
devices with x75 smaller
G & x9 smaller P, than

we require

SuperCDMS SAFARI
(modeled) (measured)

We're far from the

Tc  |30mK 111 mK fundamental limits on
G 12800 fW/K 170 fW/K h I t d t
o P~ phonon resolution due to

Syep | 6x10°9W/rthz | 4.2x10°19 W/ parasitic power
rthz
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Problem #2: W TES Sensitivity
Degradation at low T_?

As we continue to lower T,
does the W TES lose
sensitivity? Does it become
impossible to fabricate?
Who knows?

100mK -> 50mK sensitivity
remained invariant

If yes, there are lots of other TES
material out there



Problem #3: Base Temperature

* Dilution Fridge base temperature < ~70% T,

* Short Term: Definitely an issue for SuperCDMS
— UCB 75uW: 35 mK

* Long Term: Shouldn’t be a problem
— New DF at UCB/SLAC/Northwestern/FNAL (10mK)
— Queen’s DF: 7mK
— SNOLAB: Designing for hopefully 15mK



Summary

 We're slowly, but surely, continuing to improve our phonon
energy resolution by lowering T. and improving our
environmental shielding.

* Currently at o, ~ 50eV, (Ge)/25eV, (Si). We have met
requirements for SuperCDMS using 75mm detectors, but not
yet with a larger 100mm detector.

 Over the coming 5 years we hope to really explore the limits of
the technology (ER/NR rejection via charge quantization)
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Backup



Option 2: (n°yv)

PHYSICAL REVIEW A VOLUME 11, NUMBER 4 APRIL 1975

Energy lost to ionization by 254-eV *Ge atoms stopping in GeT

K. W. Jones and H. W. Kraner
Brookhaven National Laboratory, Upton, New York 11973
(Received 30 July 1974)

A l-cm® Ge(Li) y-ray detector was placed directly in a beam of thermal neutrons where the
"Ge(n,y)*Ge reaction produced 254-eV 7*Ge recoil atoms in the detector. The primary capture
v rays from the reaction were detected in a 7.6-cm X 7.6-cm Nal(Tl) detector placed at 90° to
the incident beam. In addition to singles measurements a coincidence between the primary capture ® B ro u g ht to u S by J u a n
v ray and the 7y ray or conversion electrons from the decay of the 68.75-keV "’Ge third excited

state was used to search for directional effects in the stopping and to check the value of the recoil

energy deduced from the feeding of the 68.75-keV level. The level energy was remeasured and a val- @ P h d b

ue of 68.755 = 0.005 keV was found, which when combined with the results of previous work gives Oto n n ee S to e

a value of 68.7535 = 0.0043 keV. The amount of energy lost to ionization in the stopping of the

254-eV *Ge atom is found from the energy shift in the peak position for the 68.75-keV level. Our h uge !

measurement of this shift gives a value of 39.2 £ 5.5 eV, which is then the energy loss to ioniza-
tion by the stopping of the 254-eV 7*Ge recoil atom. This result is (27 = 3)% higher than the
theoretical estimate made from an extrapolation of the Lindhard theory to this energy region. An
attempt to observe a dependence of the ionization loss on the recoil direction in the Ge crystal was
made, but no positive effect was observed.
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Ge Yield and Lmdhard
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